Competitive Policy Optimization

A core challenge in policy optimization in competitive Markov decision processes is the design of efficient optimization methods with desirable convergence and stability properties. To tackle this, we propose competitive policy optimization (CoPO), a novel policy gradient approach that exploits the game-theoretic nature of competitive games to derive policy updates. Motivated by the competitive gradient optimization method, we derive a bilinear approximation of the game objective. In contrast, off-the-shelf policy gradient methods utilize only linear approximations, and hence do not capture interactions among the players. We instantiate CoPO in two ways:(i) competitive policy gradient, and (ii) trust-region competitive policy optimization. We theoretically study these methods, and empirically investigate their behavior on a set of comprehensive, yet challenging, competitive games. We observe that they provide stable optimization, convergence to sophisticated strategies, and higher scores when played against baseline policy gradient methods.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here