Complete Dictionary Recovery over the Sphere

26 Apr 2015  ·  Ju Sun, Qing Qu, John Wright ·

We consider the problem of recovering a complete (i.e., square and invertible) matrix $\mathbf A_0$, from $\mathbf Y \in \mathbb R^{n \times p}$ with $\mathbf Y = \mathbf A_0 \mathbf X_0$, provided $\mathbf X_0$ is sufficiently sparse. This recovery problem is central to the theoretical understanding of dictionary learning, which seeks a sparse representation for a collection of input signals, and finds numerous applications in modern signal processing and machine learning. We give the first efficient algorithm that provably recovers $\mathbf A_0$ when $\mathbf X_0$ has $O(n)$ nonzeros per column, under suitable probability model for $\mathbf X_0$. In contrast, prior results based on efficient algorithms provide recovery guarantees when $\mathbf X_0$ has only $O(n^{1-\delta})$ nonzeros per column for any constant $\delta \in (0, 1)$. Our algorithmic pipeline centers around solving a certain nonconvex optimization problem with a spherical constraint, and hence is naturally phrased in the language of manifold optimization. To show this apparently hard problem is tractable, we first provide a geometric characterization of the high-dimensional objective landscape, which shows that with high probability there are no "spurious" local minima. This particular geometric structure allows us to design a Riemannian trust region algorithm over the sphere that provably converges to one local minimizer with an arbitrary initialization, despite the presence of saddle points. The geometric approach we develop here may also shed light on other problems arising from nonconvex recovery of structured signals.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here