Complete Dictionary Recovery over the Sphere I: Overview and the Geometric Picture

11 Nov 2015  ·  Ju Sun, Qing Qu, John Wright ·

We consider the problem of recovering a complete (i.e., square and invertible) matrix $\mathbf A_0$, from $\mathbf Y \in \mathbb{R}^{n \times p}$ with $\mathbf Y = \mathbf A_0 \mathbf X_0$, provided $\mathbf X_0$ is sufficiently sparse. This recovery problem is central to theoretical understanding of dictionary learning, which seeks a sparse representation for a collection of input signals and finds numerous applications in modern signal processing and machine learning. We give the first efficient algorithm that provably recovers $\mathbf A_0$ when $\mathbf X_0$ has $O(n)$ nonzeros per column, under suitable probability model for $\mathbf X_0$. In contrast, prior results based on efficient algorithms either only guarantee recovery when $\mathbf X_0$ has $O(\sqrt{n})$ zeros per column, or require multiple rounds of SDP relaxation to work when $\mathbf X_0$ has $O(n^{1-\delta})$ nonzeros per column (for any constant $\delta \in (0, 1)$). } Our algorithmic pipeline centers around solving a certain nonconvex optimization problem with a spherical constraint. In this paper, we provide a geometric characterization of the objective landscape. In particular, we show that the problem is highly structured: with high probability, (1) there are no "spurious" local minimizers; and (2) around all saddle points the objective has a negative directional curvature. This distinctive structure makes the problem amenable to efficient optimization algorithms. In a companion paper (arXiv:1511.04777), we design a second-order trust-region algorithm over the sphere that provably converges to a local minimizer from arbitrary initializations, despite the presence of saddle points.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here