We consider the problem of recovering a complete (i.e., square and invertible) matrix $\mathbf A_0$, from $\mathbf Y \in \mathbb{R}^{n \times p}$ with $\mathbf Y = \mathbf A_0 \mathbf X_0$, provided $\mathbf X_0$ is sufficiently sparse. This recovery problem is central to theoretical understanding of dictionary learning, which seeks a sparse representation for a collection of input signals and finds numerous applications in modern signal processing and machine learning... (read more)

PDF
Submit
results from this paper
to get state-of-the-art GitHub badges and help the
community compare results to other papers.