Completely random measures for modeling power laws in sparse graphs

22 Mar 2016Diana CaiTamara Broderick

Network data appear in a number of applications, such as online social networks and biological networks, and there is growing interest in both developing models for networks as well as studying the properties of such data. Since individual network datasets continue to grow in size, it is necessary to develop models that accurately represent the real-life scaling properties of networks... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet