Complexity of Training ReLU Neural Network

27 Sep 2018  ·  Digvijay Boob, Santanu S. Dey, Guanghui Lan ·

In this paper, we explore some basic questions on the complexity of training neural networks with ReLU activation function. We show that it is NP-hard to train a two-hidden layer feedforward ReLU neural network. If dimension of the input data and the network topology is fixed, then we show that there exists a polynomial time algorithm for the same training problem. We also show that if sufficient over-parameterization is provided in the first hidden layer of ReLU neural network, then there is a polynomial time algorithm which finds weights such that output of the over-parameterized ReLU neural network matches with the output of the given data.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.