Complexity-Oriented Per-shot Video Coding Optimization

23 Dec 2021  ·  Hongcheng Zhong, Jun Xu, Chen Zhu, Donghui Feng, Li Song ·

Current per-shot encoding schemes aim to improve the compression efficiency by shot-level optimization. It splits a source video sequence into shots and imposes optimal sets of encoding parameters to each shot. Per-shot encoding achieved approximately 20% bitrate savings over baseline fixed QP encoding at the expense of pre-processing complexity. However, the adjustable parameter space of the current per-shot encoding schemes only has spatial resolution and QP/CRF, resulting in a lack of encoding flexibility. In this paper, we extend the per-shot encoding framework in the complexity dimension. We believe that per-shot encoding with flexible complexity will help in deploying user-generated content. We propose a rate-distortion-complexity optimization process for encoders and a methodology to determine the coding parameters under the constraints of complexities and bitrate ladders. Experimental results show that our proposed method achieves complexity constraints ranging from 100% to 3% in a dense form compared to the slowest per-shot anchor. With similar complexities of the per-shot scheme fixed in specific presets, our proposed method achieves BDrate gain up to -19.17%.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here