Complexity theoretic limitations on learning DNF's

13 Apr 2014 Amit Daniely Shai Shalev-Shwatz

Using the recently developed framework of [Daniely et al, 2014], we show that under a natural assumption on the complexity of refuting random K-SAT formulas, learning DNF formulas is hard. Furthermore, the same assumption implies the hardness of learning intersections of $\omega(\log(n))$ halfspaces, agnostically learning conjunctions, as well as virtually all (distribution free) learning problems that were previously shown hard (under complexity assumptions)...

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet