Composable Effects for Flexible and Accelerated Probabilistic Programming in NumPyro

24 Dec 2019  ·  Du Phan, Neeraj Pradhan, Martin Jankowiak ·

NumPyro is a lightweight library that provides an alternate NumPy backend to the Pyro probabilistic programming language with the same modeling interface, language primitives and effect handling abstractions. Effect handlers allow Pyro's modeling API to be extended to NumPyro despite its being built atop a fundamentally different JAX-based functional backend. In this work, we demonstrate the power of composing Pyro's effect handlers with the program transformations that enable hardware acceleration, automatic differentiation, and vectorization in JAX. In particular, NumPyro provides an iterative formulation of the No-U-Turn Sampler (NUTS) that can be end-to-end JIT compiled, yielding an implementation that is much faster than existing alternatives in both the small and large dataset regimes.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here