Composing Elementary Discourse Units in Abstractive Summarization

ACL 2020  ·  Zhenwen Li, Wenhao Wu, Sujian Li ·

In this paper, we argue that elementary discourse unit (EDU) is a more appropriate textual unit of content selection than the sentence unit in abstractive summarization. To well handle the problem of composing EDUs into an informative and fluent summary, we propose a novel summarization method that first designs an EDU selection model to extract and group informative EDUs and then an EDU fusion model to fuse the EDUs in each group into one sentence. We also design the reinforcement learning mechanism to use EDU fusion results to reward the EDU selection action, boosting the final summarization performance. Experiments on CNN/Daily Mail have demonstrated the effectiveness of our model.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here