Compressing Recurrent Neural Network with Tensor Train

23 May 2017  ·  Andros Tjandra, Sakriani Sakti, Satoshi Nakamura ·

Recurrent Neural Network (RNN) are a popular choice for modeling temporal and sequential tasks and achieve many state-of-the-art performance on various complex problems. However, most of the state-of-the-art RNNs have millions of parameters and require many computational resources for training and predicting new data. This paper proposes an alternative RNN model to reduce the number of parameters significantly by representing the weight parameters based on Tensor Train (TT) format. In this paper, we implement the TT-format representation for several RNN architectures such as simple RNN and Gated Recurrent Unit (GRU). We compare and evaluate our proposed RNN model with uncompressed RNN model on sequence classification and sequence prediction tasks. Our proposed RNNs with TT-format are able to preserve the performance while reducing the number of RNN parameters significantly up to 40 times smaller.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here