Compressive adaptive computational ghost imaging

31 Mar 2013  ·  Marc Aßmann, Manfred Bayer ·

Compressive sensing is considered a huge breakthrough in signal acquisition. It allows recording an image consisting of $N^2$ pixels using much fewer than $N^2$ measurements if it can be transformed to a basis where most pixels take on negligibly small values. Standard compressive sensing techniques suffer from the computational overhead needed to reconstruct an image with typical computation times between hours and days and are thus not optimal for applications in physics and spectroscopy. We demonstrate an adaptive compressive sampling technique that performs measurements directly in a sparse basis. It needs much fewer than $N^2$ measurements without any computational overhead, so the result is available instantly.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here