Compressive Hyperspectral Imaging Using Progressive Total Variation

7 Mar 2014Simeon Kamdem KuiteingGiulio ColucciaAlessandro BarducciMauro BarniEnrico Magli

Compressed Sensing (CS) is suitable for remote acquisition of hyperspectral images for earth observation, since it could exploit the strong spatial and spectral correlations, llowing to simplify the architecture of the onboard sensors. Solutions proposed so far tend to decouple spatial and spectral dimensions to reduce the complexity of the reconstruction, not taking into account that onboard sensors progressively acquire spectral rows rather than acquiring spectral channels... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet