Compressive Single-Photon 3D Cameras

Single-photon avalanche diodes (SPADs) are an emerging pixel technology for time-of-flight (ToF) 3D cameras that can capture the time-of-arrival of individual photons at picosecond resolution. To estimate depths, current SPAD-based 3D cameras measure the round-trip time of a laser pulse by building a per-pixel histogram of photon timestamps. As the spatial and timestamp resolution of SPAD-based cameras increase, their output data rates far exceed the capacity of existing data transfer technologies. One major reason for SPAD's bandwidth-intensive operation is the tight coupling that exists between depth resolution and histogram resolution. To weaken this coupling, we propose compressive single-photon histograms (CSPH). CSPHs are a per-pixel compressive representation of the high-resolution histogram, that is built on-the-fly, as each photon is detected. They are based on a family of linear coding schemes that can be expressed as a simple matrix operation. We design different CSPH coding schemes for 3D imaging and evaluate them under different signal and background levels, laser waveforms, and illumination setups. Our results show that a well-designed CSPH can consistently reduce data rates by 1-2 orders of magnitude without compromising depth precision.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here