Computation Error Analysis of Block Floating Point Arithmetic Oriented Convolution Neural Network Accelerator Design

22 Sep 2017Zhourui SongZhenyu LiuDongsheng Wang

The heavy burdens of computation and off-chip traffic impede deploying the large scale convolution neural network on embedded platforms. As CNN is attributed to the strong endurance to computation errors, employing block floating point (BFP) arithmetics in CNN accelerators could save the hardware cost and data traffics efficiently, while maintaining the classification accuracy... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper