Computation of Circular Area and Spherical Volume Invariants via Boundary Integrals

We show how to compute the circular area invariant of planar curves, and the spherical volume invariant of surfaces, in terms of line and surface integrals, respectively. We use the Divergence Theorem to express the area and volume integrals as line and surface integrals, respectively, against particular kernels; our results also extend to higher dimensional hypersurfaces. The resulting surface integrals are computable analytically on a triangulated mesh. This gives a simple computational algorithm for computing the spherical volume invariant for triangulated surfaces that does not involve discretizing the ambient space. We discuss potential applications to feature detection on broken bone fragments of interest in anthropology.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here