Computational Barriers to Estimation from Low-Degree Polynomials

5 Aug 2020  ·  Tselil Schramm, Alexander S. Wein ·

One fundamental goal of high-dimensional statistics is to detect or recover planted structure (such as a low-rank matrix) hidden in noisy data. A growing body of work studies low-degree polynomials as a restricted model of computation for such problems: it has been demonstrated in various settings that low-degree polynomials of the data can match the statistical performance of the best known polynomial-time algorithms. Prior work has studied the power of low-degree polynomials for the task of detecting the presence of hidden structures. In this work, we extend these methods to address problems of estimation and recovery (instead of detection). For a large class of "signal plus noise" problems, we give a user-friendly lower bound for the best possible mean squared error achievable by any degree-D polynomial. To our knowledge, these are the first results to establish low-degree hardness of recovery problems for which the associated detection problem is easy. As applications, we give a tight characterization of the low-degree minimum mean squared error for the planted submatrix and planted dense subgraph problems, resolving (in the low-degree framework) open problems about the computational complexity of recovery in both cases.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here