Computational Lower Bounds for Community Detection on Random Graphs

25 Jun 2014  ·  Bruce Hajek, Yihong Wu, Jiaming Xu ·

This paper studies the problem of detecting the presence of a small dense community planted in a large Erd\H{o}s-R\'enyi random graph $\mathcal{G}(N,q)$, where the edge probability within the community exceeds $q$ by a constant factor. Assuming the hardness of the planted clique detection problem, we show that the computational complexity of detecting the community exhibits the following phase transition phenomenon: As the graph size $N$ grows and the graph becomes sparser according to $q=N^{-\alpha}$, there exists a critical value of $\alpha = \frac{2}{3}$, below which there exists a computationally intensive procedure that can detect far smaller communities than any computationally efficient procedure, and above which a linear-time procedure is statistically optimal. The results also lead to the average-case hardness results for recovering the dense community and approximating the densest $K$-subgraph.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here