Computer Vision-aided Atom Tracking in STEM Imaging

13 Sep 2018Yawei HuiYaohua Liu

To address the SMC'17 data challenge -- "Data mining atomically resolved images for material properties", we first used the classic "blob detection" algorithms developed in computer vision to identify all atom centers in each STEM image frame. With the help of nearest neighbor analysis, we then found and labeled every atom center common to all the STEM frames and tracked their movements through the given time interval for both Molybdenum or Selenium atoms...

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet