Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural Networks with Many More Parameters than Training Data

One of the defining properties of deep learning is that models are chosen to have many more parameters than available training data. In light of this capacity for overfitting, it is remarkable that simple algorithms like SGD reliably return solutions with low test error... (read more)

Results in Papers With Code
(↓ scroll down to see all results)