Concave Utility Reinforcement Learning with Zero-Constraint Violations

12 Sep 2021  ·  Mridul Agarwal, Qinbo Bai, Vaneet Aggarwal ·

We consider the problem of tabular infinite horizon concave utility reinforcement learning (CURL) with convex constraints. For this, we propose a model-based learning algorithm that also achieves zero constraint violations. Assuming that the concave objective and the convex constraints have a solution interior to the set of feasible occupation measures, we solve a tighter optimization problem to ensure that the constraints are never violated despite the imprecise model knowledge and model stochasticity. We use Bellman error-based analysis for tabular infinite-horizon setups which allows analyzing stochastic policies. Combining the Bellman error-based analysis and tighter optimization equation, for $T$ interactions with the environment, we obtain a high-probability regret guarantee for objective which grows as $\Tilde{O}(1/\sqrt{T})$, excluding other factors. The proposed method can be applied for optimistic algorithms to obtain high-probability regret bounds and also be used for posterior sampling algorithms to obtain a loose Bayesian regret bounds but with significant improvement in computational complexity.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here