Concavity of reweighted Kikuchi approximation

We analyze a reweighted version of the Kikuchi approximation for estimating the log partition function of a product distribution defined over a region graph. We establish sufficient conditions for the concavity of our reweighted objective function in terms of weight assignments in the Kikuchi expansion, and show that a reweighted version of the sum product algorithm applied to the Kikuchi region graph will produce global optima of the Kikuchi approximation whenever the algorithm converges... (read more)

PDF Abstract NeurIPS 2014 PDF NeurIPS 2014 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet