Conditional entropy minimization principle for learning domain invariant representation features

25 Jan 2022  ·  Thuan Nguyen, Boyang Lyu, Prakash Ishwar, Matthias Scheutz, Shuchin Aeron ·

Invariance-principle-based methods such as Invariant Risk Minimization (IRM), have recently emerged as promising approaches for Domain Generalization (DG). Despite promising theory, such approaches fail in common classification tasks due to the mixing of true invariant features and spurious invariant features. To address this, we propose a framework based on the conditional entropy minimization (CEM) principle to filter-out the spurious invariant features leading to a new algorithm with a better generalization capability. We show that our proposed approach is closely related to the well-known Information Bottleneck (IB) framework and prove that under certain assumptions, entropy minimization can exactly recover the true invariant features. Our approach provides competitive classification accuracy compared to recent theoretically-principled state-of-the-art alternatives across several DG datasets.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here