Conditional Similarity Triplets Enable Covariate-Informed Representations of Single-Cell Data

12 Jun 2024  ·  Chi-Jane Chen, Haidong Yi, Natalie Stanley ·

Single-cell technologies enable comprehensive profiling of diverse immune cell-types through the measurement of multiple genes or proteins per individual cell. In order to translate immune signatures assayed from blood or tissue into powerful diagnostics, machine learning approaches are often employed to compute immunological summaries or per-sample featurizations, which can be used as inputs to models for outcomes of interest. Current supervised learning approaches for computing per-sample representations are trained only to accurately predict a single outcome and do not take into account relevant additional clinical features or covariates that are likely to also be measured for each sample. Here, we introduce a novel approach for incorporating measured covariates in optimizing model parameters to ultimately specify per-sample encodings that accurately affect both immune signatures and additional clinical information. Our introduced method CytoCoSet is a set-based encoding method for learning per-sample featurizations, which formulates a loss function with an additional triplet term penalizing samples with similar covariates from having disparate embedding results in per-sample representations. Overall, incorporating clinical covariates enables the learning of encodings for each individual sample that ultimately improve prediction of clinical outcome.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here