Conditioning on Time is All You Need for Synthetic Survival Data Generation
Synthetic data generation holds considerable promise, offering avenues to enhance privacy, fairness, and data accessibility. Despite the availability of various methods for generating synthetic tabular data, challenges persist, particularly in specialized applications such as survival analysis. One significant obstacle in survival data generation is censoring, which manifests as not knowing the precise timing of observed (target) events for certain instances. Existing methods face difficulties in accurately reproducing the real distribution of event times for both observed (uncensored) events and censored events, i.e., the generated event-time distributions do not accurately match the underlying distributions of the real data. So motivated, we propose a simple paradigm to produce synthetic survival data by generating covariates conditioned on event times (and censoring indicators), thus allowing one to reuse existing conditional generative models for tabular data without significant computational overhead, and without making assumptions about the (usually unknown) generation mechanism underlying censoring. We evaluate this method via extensive experiments on real-world datasets. Our methodology outperforms multiple competitive baselines at generating survival data, while improving the performance of downstream survival models trained on it and tested on real data.
PDF Abstract