Confidence Scoring Using Whitebox Meta-models with Linear Classifier Probes

14 May 2018  ·  Tongfei Chen, Jiří Navrátil, Vijay Iyengar, Karthikeyan Shanmugam ·

We propose a novel confidence scoring mechanism for deep neural networks based on a two-model paradigm involving a base model and a meta-model. The confidence score is learned by the meta-model observing the base model succeeding/failing at its task. As features to the meta-model, we investigate linear classifier probes inserted between the various layers of the base model. Our experiments demonstrate that this approach outperforms various baselines in a filtering task, i.e., task of rejecting samples with low confidence. Experimental results are presented using CIFAR-10 and CIFAR-100 dataset with and without added noise. We discuss the importance of confidence scoring to bridge the gap between experimental and real-world applications.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here