Connecting Concept Convexity and Human-Machine Alignment in Deep Neural Networks

10 Sep 2024  ·  Teresa Dorszewski, Lenka Tětková, Lorenz Linhardt, Lars Kai Hansen ·

Understanding how neural networks align with human cognitive processes is a crucial step toward developing more interpretable and reliable AI systems. Motivated by theories of human cognition, this study examines the relationship between \emph{convexity} in neural network representations and \emph{human-machine alignment} based on behavioral data. We identify a correlation between these two dimensions in pretrained and fine-tuned vision transformer models. Our findings suggest that the convex regions formed in latent spaces of neural networks to some extent align with human-defined categories and reflect the similarity relations humans use in cognitive tasks. While optimizing for alignment generally enhances convexity, increasing convexity through fine-tuning yields inconsistent effects on alignment, which suggests a complex relationship between the two. This study presents a first step toward understanding the relationship between the convexity of latent representations and human-machine alignment.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods