Connecting Lyapunov Control Theory to Adversarial Attacks

17 Jul 2019Arash RahnamaAndre T. NguyenEdward Raff

Significant work is being done to develop the math and tools necessary to build provable defenses, or at least bounds, against adversarial attacks of neural networks. In this work, we argue that tools from control theory could be leveraged to aid in defending against such attacks... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet