Conservation-Based Modeling and Boundary Control of Congestion with an Application to Traffic Management in Center City Philadelphia

31 Jan 2021  ·  Xun Liu, Hossein Rastgoftar ·

This paper develops a conservation-based approach to model traffic dynamics and alleviate traffic congestion in a network of interconnected roads (NOIR). We generate a NOIR by using the Simulation of Urban Mobility (SUMO) software based on the real street map of Philadelphia Center City. The NOIR is then represented by a directed graph with nodes identifying distinct streets in the Center City area. By classifying the streets as inlets, outlets, and interior nodes, the model predictive control (MPC) method is applied to alleviate the network traffic congestion by optimizing the traffic inflow and outflow across the boundary of the NOIR with consideration of the inner traffic dynamics as a stochastic process. The proposed boundary control problem is defined as a quadratic programming problem with constraints imposing the feasibility of traffic coordination, and a cost function defined based on the traffic density across the NOIR.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here