Consistency of weighted majority votes

NeurIPS 2014  ·  Daniel Berend, Aryeh Kontorovich ·

We revisit the classical decision-theoretic problem of weighted expert voting from a statistical learning perspective. In particular, we examine the consistency (both asymptotic and finitary) of the optimal Nitzan-Paroush weighted majority and related rules. In the case of known expert competence levels, we give sharp error estimates for the optimal rule. When the competence levels are unknown, they must be empirically estimated. We provide frequentist and Bayesian analyses for this situation. Some of our proof techniques are non-standard and may be of independent interest. The bounds we derive are nearly optimal, and several challenging open problems are posed. Experimental results are provided to illustrate the theory.

PDF Abstract NeurIPS 2014 PDF NeurIPS 2014 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here