Breaking NLP: Using Morphosyntax, Semantics, Pragmatics and World Knowledge to Fool Sentiment Analysis Systems

This paper describes our {``}breaker{''} submission to the 2017 EMNLP {``}Build It Break It{''} shared task on sentiment analysis. In order to cause the {``}builder{''} systems to make incorrect predictions, we edited items in the blind test data according to linguistically interpretable strategies that allow us to assess the ease with which the builder systems learn various components of linguistic structure. On the whole, our submitted pairs break all systems at a high rate (72.6{\%}), indicating that sentiment analysis as an NLP task may still have a lot of ground to cover. Of the breaker strategies that we consider, we find our semantic and pragmatic manipulations to pose the most substantial difficulties for the builder systems.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here