Consistent model selection in the spiked Wigner model via AIC-type criteria

24 Jul 2023  ·  Soumendu Sundar Mukherjee ·

Consider the spiked Wigner model \[ X = \sum_{i = 1}^k \lambda_i u_i u_i^\top + \sigma G, \] where $G$ is an $N \times N$ GOE random matrix, and the eigenvalues $\lambda_i$ are all spiked, i.e. above the Baik-Ben Arous-P\'ech\'e (BBP) threshold $\sigma$. We consider AIC-type model selection criteria of the form \[ -2 \, (\text{maximised log-likelihood}) + \gamma \, (\text{number of parameters}) \] for estimating the number $k$ of spikes. For $\gamma > 2$, the above criterion is strongly consistent provided $\lambda_k > \lambda_{\gamma}$, where $\lambda_{\gamma}$ is a threshold strictly above the BBP threshold, whereas for $\gamma < 2$, it almost surely overestimates $k$. Although AIC (which corresponds to $\gamma = 2$) is not strongly consistent, we show that taking $\gamma = 2 + \delta_N$, where $\delta_N \to 0$ and $\delta_N \gg N^{-2/3}$, results in a weakly consistent estimator of $k$. We also show that a certain soft minimiser of AIC is strongly consistent.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here