Consistent polynomial-time unseeded graph matching for Lipschitz graphons

29 Jul 2018  ·  Yuan Zhang ·

We propose a consistent polynomial-time method for the unseeded node matching problem for networks with smooth underlying structures. Despite widely conjectured by the research community that the structured graph matching problem to be significantly easier than its worst case counterpart, well-known to be NP-hard, the statistical version of the problem has stood a challenge that resisted any solution both provable and polynomial-time. The closest existing work requires quasi-polynomial time. Our method is based on the latest advances in graphon estimation techniques and analysis on the concentration of empirical Wasserstein distances. Its core is a simple yet unconventional sampling-and-matching scheme that reduces the problem from unseeded to seeded. Our method allows flexible efficiencies, is convenient to analyze and potentially can be extended to more general settings. Our work enables a rich variety of subsequent estimations and inferences.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here