Constrained Optimization with Dynamic Bound-scaling for Effective NLPBackdoor Defense

We develop a novel optimization method for NLPbackdoor inversion. We leverage a dynamically reducing temperature coefficient in the softmax function to provide changing loss landscapes to the optimizer such that the process gradually focuses on the ground truth trigger, which is denoted as a one-hot value in a convex hull. Our method also features a temperature rollback mechanism to step away from local optimals, exploiting the observation that local optimals can be easily deter-mined in NLP trigger inversion (while not in general optimization). We evaluate the technique on over 1600 models (with roughly half of them having injected backdoors) on 3 prevailing NLP tasks, with 4 different backdoor attacks and 7 architectures. Our results show that the technique is able to effectively and efficiently detect and remove backdoors, outperforming 4 baseline methods.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods