Constrained Sequence-to-Tree Generation for Hierarchical Text Classification

2 Apr 2022  ·  Chao Yu, Yi Shen, Yue Mao, Longjun Cai ·

Hierarchical Text Classification (HTC) is a challenging task where a document can be assigned to multiple hierarchically structured categories within a taxonomy. The majority of prior studies consider HTC as a flat multi-label classification problem, which inevitably leads to "label inconsistency" problem. In this paper, we formulate HTC as a sequence generation task and introduce a sequence-to-tree framework (Seq2Tree) for modeling the hierarchical label structure. Moreover, we design a constrained decoding strategy with dynamic vocabulary to secure the label consistency of the results. Compared with previous works, the proposed approach achieves significant and consistent improvements on three benchmark datasets.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.