Constraints on OPF Surrogates for Learning Stable Local Volt/Var Controllers

7 Jun 2023  ·  Zhenyi Yuan, Guido Cavraro, Jorge Cortés ·

We consider the problem of learning local Volt/Var controllers in distribution grids (DGs). Our approach starts from learning separable surrogates that take both local voltages and reactive powers as arguments and predict the reactive power setpoints that approximate optimal power flow (OPF) solutions. We propose an incremental control algorithm and identify two different sets of slope conditions on the local surrogates such that the network is collectively steered toward desired configurations asymptotically. Our results reveal the trade-offs between each set of conditions, with coupled voltage-power slope constraints allowing an arbitrary shape of surrogate functions but risking limitations on exploiting generation capabilities, and reactive power slope constraints taking full advantage of generation capabilities but constraining the shape of surrogate functions. AC power flow simulations on the IEEE 37-bus feeder illustrate their guaranteed stability properties and respective advantages in two DG scenarios.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here