Bridging Visual Perception with Contextual Semantics for Understanding Robot Manipulation Tasks

16 Sep 2019  ·  Chen Jiang, Martin Jagersand ·

Understanding manipulation scenarios allows intelligent robots to plan for appropriate actions to complete a manipulation task successfully. It is essential for intelligent robots to semantically interpret manipulation knowledge by describing entities, relations and attributes in a structural manner. In this paper, we propose an implementing framework to generate high-level conceptual dynamic knowledge graphs from video clips. A combination of a Vision-Language model and an ontology system, in correspondence with visual perception and contextual semantics, is used to represent robot manipulation knowledge with Entity-Relation-Entity (E-R-E) and Entity-Attribute-Value (E-A-V) tuples. The proposed method is flexible and well-versed. Using the framework, we present a case study where robot performs manipulation actions in a kitchen environment, bridging visual perception with contextual semantics using the generated dynamic knowledge graphs.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here