Construire des repr\'esentations denses \`a partir de th\'esaurus distributionnels (Distributional Thesaurus Embedding and its Applications)

JEPTALNRECITAL 2017 Olivier Ferret

Dans cet article, nous nous int{\'e}ressons {\`a} un nouveau probl{\`e}me, appel{\'e} plongement de th{\'e}saurus, consistant {\`a} transformer un th{\'e}saurus distributionnel en une repr{\'e}sentation dense de mots. Nous proposons de traiter ce probl{\`e}me par une m{\'e}thode fond{\'e}e sur l{'}association d{'}un plongement de graphe et de l{'}injection de relations dans des repr{\'e}sentations denses... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet