Contaminated speech training methods for robust DNN-HMM distant speech recognition

10 Oct 2017 Mirco Ravanelli Maurizio Omologo

Despite the significant progress made in the last years, state-of-the-art speech recognition technologies provide a satisfactory performance only in the close-talking condition. Robustness of distant speech recognition in adverse acoustic conditions, on the other hand, remains a crucial open issue for future applications of human-machine interaction... (read more)

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet