Content-adaptive non-parametric texture similarity measure

5 Nov 2018  ·  Motaz Alfarraj, Yazeed Alaudah, Ghassan AlRegib ·

In this paper, we introduce a non-parametric texture similarity measure based on the singular value decomposition of the curvelet coefficients followed by a content-based truncation of the singular values. This measure focuses on images with repeating structures and directional content such as those found in natural texture images. Such textural content is critical for image perception and its similarity plays a vital role in various computer vision applications. In this paper, we evaluate the effectiveness of the proposed measure using a retrieval experiment. The proposed measure outperforms the state-of-the-art texture similarity metrics on CURet and PerTEx texture databases, respectively.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here