Context-adaptive Entropy Model for End-to-end Optimized Image Compression

ICLR 2019  ·  Jooyoung Lee, Seunghyun Cho, Seung-Kwon Beack ·

We propose a context-adaptive entropy model for use in end-to-end optimized image compression. Our model exploits two types of contexts, bit-consuming contexts and bit-free contexts, distinguished based upon whether additional bit allocation is required. Based on these contexts, we allow the model to more accurately estimate the distribution of each latent representation with a more generalized form of the approximation models, which accordingly leads to an enhanced compression performance. Based on the experimental results, the proposed method outperforms the traditional image codecs, such as BPG and JPEG2000, as well as other previous artificial-neural-network (ANN) based approaches, in terms of the peak signal-to-noise ratio (PSNR) and multi-scale structural similarity (MS-SSIM) index.

PDF Abstract ICLR 2019 PDF ICLR 2019 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here