Context-Aware Recommendations for Televisions Using Deep Embeddings with Relaxed N-Pairs Loss Objective

4 Feb 2020Miklas S. KristoffersenSven E. ShepstoneZheng-Hua Tan

This paper studies context-aware recommendations in the television domain by proposing a deep learning-based method for learning joint context-content embeddings (JCCE). The method builds on recent developments within recommendations using latent representations and deep metric learning, in order to effectively represent contextual settings of viewing situations as well as available content in a shared latent space... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet