Contextual Linear Bandits under Noisy Features: Towards Bayesian Oracles

3 Mar 2017  ·  Jung-hun Kim, Se-Young Yun, Minchan Jeong, Jun Hyun Nam, Jinwoo Shin, Richard Combes ·

We study contextual linear bandit problems under feature uncertainty; they are noisy with missing entries. To address the challenges of the noise, we analyze Bayesian oracles given observed noisy features. Our Bayesian analysis finds that the optimal hypothesis can be far from the underlying realizability function, depending on the noise characteristics, which are highly non-intuitive and do not occur for classical noiseless setups. This implies that classical approaches cannot guarantee a non-trivial regret bound. Therefore, we propose an algorithm that aims at the Bayesian oracle from observed information under this model, achieving $\tilde{O}(d\sqrt{T})$ regret bound when there is a large number of arms. We demonstrate the proposed algorithm using synthetic and real-world datasets.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here