Contextual Symmetries in Probabilistic Graphical Models

30 Jun 2016  ·  Ankit Anand, Aditya Grover, Mausam, Parag Singla ·

An important approach for efficient inference in probabilistic graphical models exploits symmetries among objects in the domain. Symmetric variables (states) are collapsed into meta-variables (meta-states) and inference algorithms are run over the lifted graphical model instead of the flat one. Our paper extends existing definitions of symmetry by introducing the novel notion of contextual symmetry. Two states that are not globally symmetric, can be contextually symmetric under some specific assignment to a subset of variables, referred to as the context variables. Contextual symmetry subsumes previous symmetry definitions and can rep resent a large class of symmetries not representable earlier. We show how to compute contextual symmetries by reducing it to the problem of graph isomorphism. We extend previous work on exploiting symmetries in the MCMC framework to the case of contextual symmetries. Our experiments on several domains of interest demonstrate that exploiting contextual symmetries can result in significant computational gains.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here