Contextualized Embeddings in Named-Entity Recognition: An Empirical Study on Generalization

22 Jan 2020  ·  Bruno Taillé, Vincent Guigue, Patrick Gallinari ·

Contextualized embeddings use unsupervised language model pretraining to compute word representations depending on their context. This is intuitively useful for generalization, especially in Named-Entity Recognition where it is crucial to detect mentions never seen during training. However, standard English benchmarks overestimate the importance of lexical over contextual features because of an unrealistic lexical overlap between train and test mentions. In this paper, we perform an empirical analysis of the generalization capabilities of state-of-the-art contextualized embeddings by separating mentions by novelty and with out-of-domain evaluation. We show that they are particularly beneficial for unseen mentions detection, especially out-of-domain. For models trained on CoNLL03, language model contextualization leads to a +1.2% maximal relative micro-F1 score increase in-domain against +13% out-of-domain on the WNUT dataset

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.