Continuous Monitoring of Blood Pressure with Evidential Regression

6 Feb 2021  ·  Hyeongju Kim, Woo Hyun Kang, Hyeonseung Lee, Nam Soo Kim ·

Photoplethysmogram (PPG) signal-based blood pressure (BP) estimation is a promising candidate for modern BP measurements, as PPG signals can be easily obtained from wearable devices in a non-invasive manner, allowing quick BP measurement. However, the performance of existing machine learning-based BP measuring methods still fall behind some BP measurement guidelines and most of them provide only point estimates of systolic blood pressure (SBP) and diastolic blood pressure (DBP). In this paper, we present a cutting-edge method which is capable of continuously monitoring BP from the PPG signal and satisfies healthcare criteria such as the Association for the Advancement of Medical Instrumentation (AAMI) and the British Hypertension Society (BHS) standards. Furthermore, the proposed method provides the reliability of the predicted BP by estimating its uncertainty to help diagnose medical condition based on the model prediction. Experiments on the MIMIC II database verify the state-of-the-art performance of the proposed method under several metrics and its ability to accurately represent uncertainty in prediction.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here