Continuum armed bandit problem of few variables in high dimensions

21 Apr 2013  ·  Hemant Tyagi, Bernd Gärtner ·

We consider the stochastic and adversarial settings of continuum armed bandits where the arms are indexed by [0,1]^d. The reward functions r:[0,1]^d -> R are assumed to intrinsically depend on at most k coordinate variables implying r(x_1,..,x_d) = g(x_{i_1},..,x_{i_k}) for distinct and unknown i_1,..,i_k from {1,..,d} and some locally Holder continuous g:[0,1]^k -> R with exponent 0 < alpha <= 1. Firstly, assuming (i_1,..,i_k) to be fixed across time, we propose a simple modification of the CAB1 algorithm where we construct the discrete set of sampling points to obtain a bound of O(n^((alpha+k)/(2*alpha+k)) (log n)^((alpha)/(2*alpha+k)) C(k,d)) on the regret, with C(k,d) depending at most polynomially in k and sub-logarithmically in d. The construction is based on creating partitions of {1,..,d} into k disjoint subsets and is probabilistic, hence our result holds with high probability. Secondly we extend our results to also handle the more general case where (i_1,...,i_k) can change over time and derive regret bounds for the same.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here