ContraGAN: Contrastive Learning for Conditional Image Generation

NeurIPS 2020  ·  Minguk Kang, Jaesik Park ·

Conditional image generation is the task of generating diverse images using class label information. Although many conditional Generative Adversarial Networks (GAN) have shown realistic results, such methods consider pairwise relations between the embedding of an image and the embedding of the corresponding label (data-to-class relations) as the conditioning losses. In this paper, we propose ContraGAN that considers relations between multiple image embeddings in the same batch (data-to-data relations) as well as the data-to-class relations by using a conditional contrastive loss. The discriminator of ContraGAN discriminates the authenticity of given samples and minimizes a contrastive objective to learn the relations between training images. Simultaneously, the generator tries to generate realistic images that deceive the authenticity and have a low contrastive loss. The experimental results show that ContraGAN outperforms state-of-the-art-models by 7.3% and 7.7% on Tiny ImageNet and ImageNet datasets, respectively. Besides, we experimentally demonstrate that contrastive learning helps to relieve the overfitting of the discriminator. For a fair comparison, we re-implement twelve state-of-the-art GANs using the PyTorch library. The software package is available at https://github.com/POSTECH-CVLab/PyTorch-StudioGAN.

PDF Abstract NeurIPS 2020 PDF NeurIPS 2020 Abstract
Task Dataset Model Metric Name Metric Value Global Rank Result Benchmark
Conditional Image Generation CIFAR-10 ContraGAN FID 10.30 # 11

Methods


No methods listed for this paper. Add relevant methods here