Contrastive Learning Via Equivariant Representation

Invariant Contrastive Learning (ICL) methods have achieved impressive performance across various domains. However, the absence of latent space representation for distortion (augmentation)-related information in the latent space makes ICL sub-optimal regarding training efficiency and robustness in downstream tasks. Recent studies suggest that introducing equivariance into Contrastive Learning (CL) can improve overall performance. In this paper, we revisit the roles of augmentation strategies and equivariance in improving CL's efficacy. We propose CLeVER (Contrastive Learning Via Equivariant Representation), a novel equivariant contrastive learning framework compatible with augmentation strategies of arbitrary complexity for various mainstream CL backbone models. Experimental results demonstrate that CLeVER effectively extracts and incorporates equivariant information from practical natural images, thereby improving the training efficiency and robustness of baseline models in downstream tasks and achieving state-of-the-art (SOTA) performance. Moreover, we find that leveraging equivariant information extracted by CLeVER simultaneously enhances rotational invariance and sensitivity across experimental tasks, and helps stabilize the framework when handling complex augmentations, particularly for models with small-scale backbones.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods