Contrastive Multi-view Hyperbolic Hierarchical Clustering

5 May 2022  ·  Fangfei Lin, Bing Bai, Kun Bai, Yazhou Ren, Peng Zhao, Zenglin Xu ·

Hierarchical clustering recursively partitions data at an increasingly finer granularity. In real-world applications, multi-view data have become increasingly important. This raises a less investigated problem, i.e., multi-view hierarchical clustering, to better understand the hierarchical structure of multi-view data. To this end, we propose a novel neural network-based model, namely Contrastive Multi-view Hyperbolic Hierarchical Clustering (CMHHC). It consists of three components, i.e., multi-view alignment learning, aligned feature similarity learning, and continuous hyperbolic hierarchical clustering. First, we align sample-level representations across multiple views in a contrastive way to capture the view-invariance information. Next, we utilize both the manifold and Euclidean similarities to improve the metric property. Then, we embed the representations into a hyperbolic space and optimize the hyperbolic embeddings via a continuous relaxation of hierarchical clustering loss. Finally, a binary clustering tree is decoded from optimized hyperbolic embeddings. Experimental results on five real-world datasets demonstrate the effectiveness of the proposed method and its components.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.