PNS: Population-Guided Novelty Search for Reinforcement Learning in Hard Exploration Environments

26 Nov 2018  ·  Qihao Liu, Yujia Wang, Xiaofeng Liu ·

Reinforcement Learning (RL) has made remarkable achievements, but it still suffers from inadequate exploration strategies, sparse reward signals, and deceptive reward functions. To alleviate these problems, a Population-guided Novelty Search (PNS) parallel learning method is proposed in this paper. In PNS, the population is divided into multiple sub-populations, each of which has one chief agent and several exploring agents. The chief agent evaluates the policies learned by exploring agents and shares the optimal policy with all sub-populations. The exploring agents learn their policies in collaboration with the guidance of the optimal policy and, simultaneously, upload their policies to the chief agent. To balance exploration and exploitation, the Novelty Search (NS) is employed in every chief agent to encourage policies with high novelty while maximizing per-episode performance. We apply PNS to the twin delayed deep deterministic (TD3) policy gradient algorithm. The effectiveness of PNS to promote exploration and improve performance in continuous control domains is demonstrated in the experimental section. Notably, PNS-TD3 achieves rewards that far exceed the SOTA methods in environments with sparse or delayed reward signals. We also demonstrate that PNS enables robotic agents to learn control policies directly from pixels for sparse-reward manipulation in both simulated and real-world settings.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here